The present study was conducted on 40 samples of spleen of goat at 4 different age groups (10...
spleen samples each from mid to late gestation period, kids of 0-2 months of age, kids of 2.1-4 months of age and kids of 4 months and above age). The samples were collected from healthy animals irrespective of sex from Municipal Corporation Slaughter House and carried to laboratory in ice box. To collect the sample from foeti, the gravid uteri were dissected to remove the foeti and their age was determined on the basis of crown rump length (Kadu and Kaikini, 1984). The foeti were dissected to collect the spleen. Tissue samples of 3-4 mm size were collected and fixed in 10% neutral buffered formalin for histo-morphological observations. After fixation, tissues were processed as per method suggested by Drury and Wallington (1980).

Results and Discussion
The spleen of goat was found to be composed of capsule, trabeculae, red pulp and white pulp (Fig 1). During the present study, it was observed that the spleen was ensheathed by the connective tissue capsule of uneven thickness. The capsule showed two types of layers namely, outer fibrous and inner muscular layer (Fig 2). Similar observations were recorded by Estacio et al. (1997) and Landsverk (1998) in domestic animals. In agreement with the present findings, Geetha et al. (2001) in mice, rat and guinea pig and Raju et al. (2003) in goat, reported that, the outer fibrous capsule...
was composed of wavy intermingled reticular, elastic and collagen fibres with fibroblasts. It was noticed that the distribution of these fibres was unequal and varied with the advancement of age. A progressive increase in the amount of collagen fibres from prenatal to postnatal age groups (group I to group IV) was recorded. In group IV, the collagen fibres were found predominant over the other fibre types (Fig. 3). The amount of reticular fibres in the capsule, however, showed reverse trend. These fibres were predominant over other fibre type in group I. There was a progressive decrease in the size and amount of reticular fibres with the advancement of age. The elastic fibres in the outer fibrous layer of capsule showed a progressive increase in size and amount up to group III, but in group IV, these fibres appeared short and fragmented (Fig 4). These observations of the present study are in accordance with the findings reported by Geetha et al. (2001) in mice, rat and guinea pig. Raju et al. (2003) reported the equal amount of collagen, reticular and elastic fibres in the outer fibrous layer of capsule. Karad et al. (2002) in goat reported the presence of collagen, elastic and smooth muscle fibres in the capsule of the spleen however; they did not mention the presence of reticular fibres in the capsule of spleen.

The inner smooth muscular layer of splenic capsule was very thin in group I (Fig. 2), which later on increased in thickness with the advancement of age and became two layered during late prenatal period. These two layers of smooth muscle were oriented at right angle with each other. Similar arrangement of these two inner muscular layers was observed in group II and group III. However, in group IV, occasionally, three muscle layers were also observed (Fig. 5). These observations of the present study are on the lines of findings reported by Malik et al. (2001) in goat. Although, Bacha and Bacha (2000) reported similar arrangement of muscle fibres in horse and cow, they found interwoven arrangement of muscle fibres in goat. This must have appeared at the site of intersection of the muscle fibres of two layers which lie at right angle to each other.

The inner muscular layer of the capsule had collagen, elastic and reticular fibres interposed between the smooth muscle cells. A progressive increasing trend in the amount of collagen and elastic fibres, while decreasing trend in the amount of reticular fibres was noticed with the advancement of age. However, in group IV, the amount of elastic fibre was comparatively more than other fibre type.

The result of the present study pertaining to the increase in amount of elastic fibres in the capsule provide elasticity, which is necessary for enlargement of organ during its growth and its predominance in inner muscular layer in group IV may aid in function of contraction along with smooth muscle to expel the erythrocytes and to increase the number of corpuscles in general circulation. The predominance of collagen fibres in the outer layer of capsule in group IV is necessary to provide firmness to the organ after cessation of growth.

In agreement with the observations recorded in the present study, Copenhaver et al. (1975) stated that the collagen fibres passes through a developmental stage in which they are argyrophilic and identical with reticular fibres. These reticular fibres are merely an immature stage of collagen fibres and get converted into matured collagen fibres. Possibly this could be the reason for progressive increase in the amount of collagen fibres and a decrease in amount of reticular fibres in capsule with the advancement of age observed during present study.

During the present work, the average thickness of splenic capsule was recorded as 86.03±0.77 μm, 101.63±4.89 μm, 137.80±6.61 μm and 162.52±8.06 μm in group I, II, III and IV respectively. This progressive increase in the thickness of capsule showed highly significant statistical difference at 1% level with the advancement of age. Similar increasing trend in thickness of capsule was reported by Vyas and Singh (1991) in goat, Gadre et al. (1985) in cross bred calves, Malik et al. (2001) in goat, Baishya et al. (2002) in pig foetus and Hecser et al. (1992) in cattle, sheep and pig.

During the present work, it was observed that the connective tissue trabeculae radiated from capsule into the splenic pulp and supported the blood vessels. The trabeculae were few in early prenatal
Fig. 5 Photomicrograph of splenic capsule in late prenatal stage of group IV
a. Outer fibrous layer
b, c and d. Three layers of inner smooth muscular layer.
(Haematoxylin & Eosin X 400)

Fig. 6 Photomicrograph of spleen showing few trabeculae in early prenatal age of group I (Arrow)
(Haematoxylin and Eosin X 200)

Fig. 7 Photomicrograph of spleen showing well developed branched trabeculae in group III (Arrow)
(Haematoxylin and Eosin X 100)

Fig. 8 Photomicrograph of splenic capsule showing elastic fibers in group IV
a. Outer fibrous layer
b. Inner muscular layer
(Verhoeff’s elastic stain X 100)

Fig. 9 Photomicrograph of spleen showing numerous fibroblasts around the blood vessels in larger trabeculae (Arrow)
(Haematoxylin and Eosin X 400)

Fig. 10 Photomicrograph of spleen showing distinct internal elastic lamina with few elastic fibers in the wall of trabecular vessel in group III
a. Internal elastic lamina
b. Trabecular vessel
c. Trabecula
(Verhoeff’s elastic stain X 100)
age (Fig 6), but their amount and size increased and became branched with the advancement of age (Fig 7).

The reticular fibres in the trabeculae were wavy, intermingled and predominant than the collagen and elastic fibres in the group I, which later on decreased progressively with the advancement of age. However, the collagen fibres and elastic fibres in the trabeculae showed progressive increase in their amount with the advancement of age (Fig. 8).

It was observed that the smooth muscle cells were the major component of splenic trabecule, but their amount was more especially in the group III and group IV. These observations of the present study are in agreement with Baishya et al. (2002) in cross bred pig foetuses and Malik et al. (2001) in prenatal goat. They mentioned that the muscular component and trabecular thickness and network increased with the advancement of age.

Copenhaver et al. (1975) stated that predominancy of elastic fibres and smooth muscle cells in the trabeculae enable spleen to make rapid change in volume and in contraction to expel erythrocytes and increase the number of these corpuscles in the general circulation.

In all age groups of animals, it was observed that, the vessels entered in the splenic pulp and were found supported by the trabeculae. The largest vessels were observed near the hilus. This finding is similar to those recorded by Landsverk (1998), Trautmann and Fiebiger (2002) in domestic animals, Karad et al. (2002) in goat, Faroon and Henry (1988) in sheep.

The larger trabeculae showed numerous fibroblasts around the blood vessels (Fig. 9). The trabecular vessels showed general histological plan of their wall having distinct internal elastic lamina with few elastic fibers in their wall (Fig. 10).

The sections stained with Gomori’s reticulin stain, showed the network of reticular cells and reticular fibres throughout the splenic pulp in all age groups of animals. This finding is in agreement with that of Landsverk (1998), Trautmann and Fiebiger (2002) in domestic animals, Faroon and Henry (1988) in sheep, Tetsuo et al. (1992) in doe and Gadre et al. (1985) in calf.

Acknowledgement

We are thankful to Dr. V.R. Bhamburkar, Retd. Professor & Head, Deptt. of Veterinary Anatomy and Histology and Ex-Dean, Nagpur Veterinary College, Nagpur for his inspirational guidance and constructive criticism in interpreting the result throughout the research as well as Dr. R.S. Dalvi, Retd. Professor & Head, Deptt. of Veterinary Anatomy and Histology who generously provided stage and facility for the research in the department.

Conflict of Interest: All authors declare no conflict of interest.

References:


